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THE SOLUTTON BY I ERATION OF NOWLINEAR INTIGRAL EQUATIONS

ARGTRAOT

cerwe AN A

In the mathematical formulation of many physical problems there are fre-

quentiy encovntered integral cquations of the linear as well as non-linear
type. '

The adequat® solution of such equations then becomes a pract
necessity.

31

It turns out that fer iarge classes of non-linear integral equations
eseribing certain wave phenomens the waell kno

wn method of zuccessive approxi-
ations provides a feasible means of constructing a solution, securing 1its
"“‘queness and, in the process, furnishing practical estimates of relevant
nagnitudes and errcrs., Furthemmcre, the method also lends itgel:r quite easily
to treatment on high speed computing machinery.

Theses principal conclusions are illustrated -~ and borne out -~ by means of
an appropriately chosen examp:e,

.




1. INTRODUCTICH

It is & well knowvn fact that many physical prollems lead te nonlinear integral
equations. The following examples gerve to illustrate this point.

1. Nystrom has showm [1] that the general first boundary value nroblem in the

theory of ordinary cdifferential cquations may be reduced to an ordinary differential

equation of the tyne
E:]

y =F (x,7) -1/2 £ x £1/2
with the boundary conditions y(-1/2) = y(1/2) = O, This equation, in turn, is
equivalent to the integral equaticn
1/2
]

y (x) = f K(x;8) F {s,y(s)) ds,
-1/2
X(x,3) ropresenting the Green's function o7 the boundary value problem. e
ii. Eoundary value prcblems of the form
Aumu__ +u, =expa
, =
withus= f (‘x,f) on the boundzyy C of the given region B; are reducible to integral
equations, as follows [2]t Let w(x, §) be the solution of the boundary vslue
zroblem ‘
Awve=0, w=fonC,
Then tls function y = u-w clearly satisfies

Ay-y expw = [exp (y)-yJ exp w

vithy » O on C. If now K(x,‘si 3 s,a)‘; 0 denotes the Green's function ‘of the problem

Ay-y expw=0, y=0onC,

o




then it may be shoin that y(x, }) i3 2 sclution of the nornlinear int~gral equatior.

y&,§)+‘£{ K(x

2 os.a) Mewen () ..v1 e (w\ dedG = 0,
J’ z all Seul L"'L N7 u’J . I3 ¥ ‘

iii. In the discussion of certain wave phenomena L, Lichtcnstein LBJ was 1ad

w0 the gstudy of integral equations of the form
' b b
o9
. L Y (x) = Z f fKi(s’Sl.“Sih{’?f"y(si) dslo'.dsi = O’
i=l a a .

with L denoting a linear operator, and the Ki symmetric and continuous functions
in the (n+l) dimensicnal unit cube.

Physical dgituations leading tc similar nonlinesr integral equations have also
bern described by Schmeidler D_gz :

The solution of such irtegral equations may be accomplished in general by a
variety of methods, with the choice of the most appropriate one naturally depesnding
upon the form and type of the integral equaticns of interest. Such metho&s may
emply closed analytical sxpressions, power series expanaions, the replacemznt of
integrationa hy surmmations; successive appreximations, variational methods; etc. [ 5 ] .

' The approach to be used hers will ve %he iterative one, to be applied to

Integral equations of a generalized Lichtenstein type:

. b b

y(x) - 2 j.,. y Ki(x,sl,o'osi)Fi(,Slgn--si) y(xl)'ooy(si),‘ldslooodsi = 90 (1)

iwl a a

Isiegral eéquations containing an "innonogenecus” term, e.g., of the form

Y - Ky () <K G foF ") = 0

ean obwiously be refuced to the form {1) by the substitution.:

y-y*-Ko-
For kernels Ki vhose squares are integrable, and functions Fi that have.bounded
derivatives the existence and uniqueness of a solution will be proved; and an
upper bound for max [y will be given. The proof is based on the method cof successive

iterations, a method which also easily provides an estimate of the error inherent in
2
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the nth épprox:‘..mation. The rosults will then be gensralized to systcmé of =quations
of type (1), and, finally, an example will be given.

2.  ASSUNPTIONS AYD MOTATICKS.

For the sake of simnlieity, we shall toke r = 2 in eq. (1), i.c¢. consider in

the interval I: a & %,3,t £b the cquation

y(x)- rKl(x,s) FI:S’Y‘:S))dS -j{/rxe(x’s’t’)Fz(s.‘t,y(B;' {t))dsdt

2
The kernels K, and K, will be assumed to have integrable squares, so thatfl&(x,t,‘;ds,

0. (2)

ﬂkzz(x,s,t)ds dt exist and are continucus functions of x £I. For ihe maximum of
a continuous function f(s) defined in I we shall emoloy the notation

NEN = max £ (x)f .

T
ACL

) -0 .
K = Hfl{: ds +JC(; K22 ds dt J certainly exists.
The continuous functions Fi(s,u), F, (s,t;u;v), defined ¢

a

where J denotes a certain interval {=c,c >, are assumed to satisfy conditions of .he

form

[F.i(s,u.l ) - Fl(S,uz)l& L, lul = u, | (3)

IFz(s,t,ul,vl) - Fe(s,t,uzvz)lﬁ L2( lul-uzl +]V1 - Vgo s

vhere L., L, are positive numbers independent of s, t, u, v. The quantities
2 2, a1 um @  ue i . AN
Ml = |l Fl CS;U)“ ‘» Mg % :=F2 (s, t, 0, O) i
‘then also axist.

Relations (3) certainly hold if, for example > F'1 and F, have continuous partidd

derivatives, aFl/Bu, an/E:u, 6F2/’6v for arguments restricted, respectively to the
interyals I, J.

s
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Further, we nut

3

A =bea,a=lor? for hel or A/

o

Other quantities to be

L

mployed later on are
2 2 2 2 2 2
L” = Ll + 142 s M = 141 + M
G . 1
A KN Ld h, A }ﬁ. = Do

In the following' extensive use will be made of Schwarz's inequality

2 2 2. ,1/2 g '
fretsd e ([ ¥ ( fla? (1)
This relation is applicable also to multiple integrals and sums. If we put
TR S
then eq. (lj) may be sxpressed in the foim
2,1/? 2
1%V & 1(0)1le). )

3. IEMMA.
We are now in a position to si... the fcllowing Lamma:

L=t y €J be a solution of Bg. (2), and let the F, satisfy conditions of type

(3)e Then Jy4(1 - 2D) & E, .__
" Proof. It follows from eq. (2) that

;y,‘t!{KlFli + [T,
In this inequality the right side is,by (5), identically in x,
£ I('Kl) I(F)+I(K)1 (F,).

From Echwarz!s inequality for sums it may now Le deduced that
TR Z i/¢ -2, 2 1/2
s A { L/
by ls [I7(K 5 + T9(,)] VL 170)) # 1°(F,) ]
72 2 1/2.
e K[1°F) + T°(F) ]

Since, by assumption, y & J, we may make use of relationships (3), getting
2 ‘ : -2
1° (F,) f./f[lpz(s,t,o,on + Lyly(e) + fy (6)j )] © asat

£82%0, v 21, My o )2,

in

-~ -

e




a,.
IRa

Dren - K
I (L‘Il ) £ & (l":l + 2 Ll ” b f’ ) ®
2y adtition, then,

Clia 2L By p )°.

12(1?1) oI (F,) £ 4
Thus
Nyl ek %0+ 2Lpyy ) = &+ 200yf
which nroves the lemma. _
4, IEXISTENCL THEQREN. Yor furctions F., F2 satisfving conditions (3) with
oéE/{l-'zD)f.o (6}
eqs (2) has exactly one solut ion.
To prove this thevrem we use successive iteration, starting witn arbitrary con~
tinuous function yé € J5 and Adefining & sequence { yni of continuous functions by
Yoy &) =fK, G,8) (5,5 () ds + K, {x,3,80F, (s,t,3, (o), )
yh(t) ds dt, n = 0,1,2...
First we show by induction that Jer €J. Let, then, Vpna have this properiy.
By definition (7), following the same reasoning that wras used to prove the lemma,
thers is oWtoine?. |
| Uy h£E+D 0y ..
From the inductive assumption and condition (6) it may now be inferred that
Hy §sE + 2De£ e
i.e. Ty €d.
Next, t}}e sequence is easily shown to be unifcormly convergent; as follows:
From

. & 105 ’ —_ YL .
| Va1V 1 % IJ5F &) - F U, 4)) dsj

¥ iﬂ K2(F2 (yn) ".F2 (yn-l) ) ds db l

it follows, by means of Schwarz's inequality, that

5
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Taking advantage of rcl-tions (3) U il by il s gl
£ 0K :.('Tl o | -
= S F RSN
so that ’
v £ Dfiy -¥ 8)
” yn+1._.n” ﬂ.,n ’n-l" 3 7

or, by induction,

n
Y = YA Uy -y (D), n>o0.

1

00 :
8ince 1 -~ 2D >0 J (2D)n is convergent, and it follows thet the partial sums

n=0
s of I, * n%- (yn = yn-l) are absolutely and uniformly convergent,

The continuous limit function y of the {yn } is easily shown to be a solﬁticn
of eq. (2). Putting |
3
F =
flS.Fi(y) ds + ij2 o) ds at =y )

¥e find namely, that

170 - V12 K[PPE G - B 60 + CE,) - B0 ] Y2,

.Bu":. the conliinuity of the F:L in conjurction wibh the uniform convergence of I

towards y suffice tc make the difference,'Fi(yn) = Fi(;y) arbitrarily small by

taking n sufficiently large, Thus also lim Ty © y* uniformly in ®xe It follows

that y* = ¥, i.es that y is a solution of eq. (2).

Fins1lly , to show that y is the only solution of eq. (2) under s conditions

e Ao

stated above let it be assumed that there exists another solution Y(x). Clearly

Y =y f4hy g ~YH + Wy -5,

-——————



and ﬁym.‘-yﬂ < €/2 for n,-Nl. The rcasonine apnlicd ebove to cgtailish thc

relztionship (5) nov leads to

Il v - Y0£(D) &y -YH,

n
or
Wy, - he@) ly, -1,
vhence
| Ype1 =18 <& /2 for n >Ny
Consequently

FY-ylic<e.

‘Due to the arbitrariness’'sf € and the meaning of Y - yffit

that Y(x) ~ y(&x) = 0.

is then necessary

.



By the lemma,which ir applicable here, and by condition (6),
Iyl £E/(1 - 2D) £ C
For increasing values of K, L, M, theretore¢,the upper bound
E/(1 - 2D) of {yf§also increases.
s ¢f the srrorjly - ynij of the nth approximaticn Yn is
sasily obtained. From

Iy - y'n'i"ymlﬁznn v ly= yml”

it follows that

nem
Iy - e X U¥y,17v ¥ Hfy - Yoemer Ul
i=n

For fixed n, m-poe then since e 4 unifomaly,
o0

- y - /"
lly Yn_ﬂ.e jﬁ Ilyi+1 yi"

o n-1

© -:I = & - —
1%0" Viex =il = Z Mypq =7, M-
: i=o
Iy - s Hellyy = 3,00 (20)°/(( - 2D) for nzoO. (9)
5. GENERALIZATIONS.
Equaffion (2) may be considered to be a special case of a more gener).
systex

y(x} - j-lf:""l Kij(x".'l’“" sj)Fij(sl,...aj,yl(si),...yl(sj),...yp(sl),...,
yp(sj)dslooodaj - O,

where i « 1,2,.00y 2, P 21, q Z1. To such systems the results of the
previous sections may be transferred without ditfficulty; it is necessary
only to replace the quantities a, E, D ff v /[, etc. by

ey -




a=l1lorqforAdglorh > 1,

; 2 2
A CPTEE AS
J

w2 ,a KM =E A" K L a0,
7:' My g L5 A% £ Ty -
Y]

isi=4E w0k .

b T B

Fimally; the important subasidiary candition 1 - 2D > O must be replaced by 1 -~qh >C,
Forp = 'q =1, 1.e., for the equation

yix) - fx(x,s) P (3,y(8)) ds =0, (19)
this conditien & ~ g0 » O bacomes 0 <ARKL < 1, or
0<a?x®1? < 1. (11)
Let us uscertain its meaning forr the cass of the linear integrel eqq.ation
of the sscond kind . 2
y(x) = M fX (,9) 3(6) tw = £ (@) (12) .

This type of equation is cbtained from eqa. (10} by putting
F(s,u) = g(s) + A u
| £(x) = fx(x,8) g (#) as.
Since in this case L = HaF/dull = (X[, inequality (11) indicates that
W [ Ka,t) asar 2 12%® ¢ 1,

Now for the characteristic value of smallest absolute amount of the

symastric “ernel there exists the relation [6]

¢ r 2 =1
N2 (ffKSanat)™ .
Consequently, conditdon (11} bscomes

IN <IN,
which is the well-known sufficient condition for the existence of a uniquae

‘solution of eq. (12) for arbitrery f£1x),

—wepaa




6 APPLICATIONS.

There are many practical cases where the kernels may be expressed in
bilinear forms

o :
Ki(x,8) = 4 8y, (x4, (=) (13)
=t 0 h I S

Ko(x,8,2) = 5 P,y (X) ¥y (850)

-

over & finite or infinite number of values i, J. In such cases the iterative

the gh being lirearly independent of the ¢2j' and the summaticn to be extended

procedure (7J) clearly becomes

Tper (%) = { 914(X) Ppoay i +3- %oy (x) a1, 4 " (1)
LT S Frule) 7y (3 zi'¢11(3) Po * 537"23("’) 9yy)d8

qn+1,;] - /:,f'?,?j Fz(a,t, }{’ (8) + 1‘_’:(3)', {(t) + ?(t))ds ds,

The iterative yrocedure 1or the functions yn(x) is thus reduced to a .metuod
of successive approximation for the constante p ni? qnj’

f’ml,i = fl(pni’ qm) y (15)

nel,y " B (P g0
In the 1limit, then,

yix) = Zi' (x) By + ‘j”’zj (x) a4 , (16)
where the Pys 3 satisfy the functioral »quations
p; - @l {3;+ 9, )
for all i, j.
1y =&, (v, qy) an

10
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Whenevar the functional equations (1) are directly solvable the
solution (16) may be obtained immediately. Otherwise use musc be made of
the successive aporoximations (1%). .
Let us now apply the foregoing deductions to the following cass:
Kl(x,s) = x(1-8), I: o, 1D
K2(x,s,t) = exp(x~-g~t)
Fl(s,,u) = A(u+l) J: (—1,‘ 1y
F2(s,t,u,v) - lAuv,

Ths eguation to be solved, than, is 1

/
y(x) = {fx(l-s) [y(s)+1] ds + g/;;rexp(x-‘s-t)y(s)y(h)dsdt} =0,

~ a amvesamsanan AP $ha dbanvatdwra mnuaratiimae Alaavianna A ahAawa 4+ 2o
FOS LIT VVIITOL ECLVO Vi UG LUGCI®UVLTC pRiviiole: © UAoLUuDOTU |auvvyYe Wy 4o
sufficient that
0 £ E/{1-2D) <1. (6)
Now
Q-
S 1/2
K= [(1/3) + (e =13Me?] = 131
pe 22921, weng.

Condition (6) is satisfied, then, for
. . 2
IMer s [K (L 2V’é).:] a 0,2
Further, the lemma indicates that for the solution y{(x),

e T, . . 4 a
Bykex IrMfa-2% ixy Y2},

(18)

(19)

Since in this example 1 = ] = 1, the iterativs proceas for aq. (18) may be

expressed in tha form

yml(x) ok (pmlx * Yney P (x»

b




with ! . -
P ) (1-s) [Mp stq exp (8)) + 1 as

D>y

According to the existence ard uniqueness theorem p = lim P
Q= 1lin qn exist., These limits satis{y & system of eguatilons corresponding
to equations (17), in this cass
p{1-A/6) = Qr(e=2) = 1/2

G [(1 ~2/e)p q]2 - Qe

Eliminating p now there is obtained for q the equation

s

Mep+p)l=va (20)

z

a = OAe=2)" + (b=h)e
p = 3(o-2)

’l- 3‘.(6')‘)2-
Consequently,
2, . 21Y% ;. 2.2
q= {(T - 2a8A%) + Iy{y = LaB) )] }/Zu L (1)
0f the two possible sciutions indicated here the one corresponding to the
positive sign becomes unbounded as A approaches zoro. Since it is desired
to keap the solutions for all jAf ﬁ,ko of nom nct exceeding unity the positive

sign in eq. (21) must be discarded.

12
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Suppose we wish to determine the solution of eq. {(18) for X = 0.2.

Fer the initial approximation we take

o

Yo (%) = 0.2:(x + exp (x)).
Ths resulting &pproximations
P ° 0.2 [pn/é + qn(e-Q)J + 'l/'?.

2/
Uy = 0.04 [(9—2);:"/0 + qn]

are shown in the table below.

Kesmmammd vom Boemmmencef o

..n Pn qn
o 1,000 1,000
1 0.6770 0,0639
2  0.8:7 £,0024
3 0.51681 0,0008
b 0.5174 0,0008

The exact solution; as determined from eq, (21}, is

y(x) = 0,2 (0.51735 x + 0.00075 exp (X)),

e

While there i3 alwayz converge:ce to the aoclution fer Y, €9, I\ £ }‘o’
the cholce of an initial approximation T outsicde of J, or a value of |l »‘o
=2y laad to divergence. This is the case, fcr sxample, for p o = = 25,

A= 0.2, amdp, =g, =1 A=l o
lark Tl

MARK ZOTKIN
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It is worthwhile mentioning that iterative procedures such as those

exemnlified by eqs. (15) are eminently suited for treatment on high speed

computing machinery. The required quadratures may be performmed vy an

guitavie standard methods, or by means of the formulas outlined in [ 7].

‘gchri ebansx, Math, Ann
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